

Development of a Consistent Methodology for Estimating Greenhouse Gas Emissions from Oil and Gas Industry Operations

Karin Ritter, *API*Miriam Lev-On, *BP plc*Susann Nordrum, *ChevronTexaco*Teresa Shires, *URS*

API Emissions Methodology WG

Objectives –

- provide technical expertise on existing methodologies and ways to improve and streamline estimates
- Promote consistent estimation of petroleum companies GHG emissions
- Structure multi-sector expertise to ensure coordinated industry effort
- Many Member Companies active on WG
 - » BP, ChevronTexaco, Conoco, Equilon, ExxonMobil, Marathon, Phillips and Shell

The Inventory Puzzle

P

Development Process

State of Knowledge -

- Conducted initial comparison of members internal guidance
- Augmented analysis by including government and international agency methodologies

Compendium Structure –

- Developed a device classification scheme
- Adopted a consistent technical units system with appropriate conversion factors
- Included detailed exhibits for step-by-step computations

CO₂ and CH₄ Emission Sources - Combustion Devices

Indirect Emissions

- Off-site electricity generation
- Steam import/export

Note: Treatment of Industrial Combustion and Indirect Emission is generic for most industrial and commercial applications

Products distribution

Personnel transport

CO₂ and CH₄ Emission Sources - Non-Combustion Units

Note: Treatment of non-combustion emissions linked to specialized industry processes and operations

Refinery processes

CO₂ and CH₄ Emission Sources - Various Industry Operations

Compendium Attributes

- Treatment of Industrial Combustion generic for most Industrial and Commercial combustion devices
- Other processes tailored to Oil & Gas Industry sources and operations
- Computational scope limited to CO₂ and CH₄
- Comprehensive compilation of existing factors
 - Combustion emissions suitable for all industries
 - > Non-combustion emissions linked to specialized processes
- Decision trees used to help inventory developers maximize use of available data
- Case studies from across the petroleum industry used to demonstrate the computational approach

Example Decision Tree for Selecting CH₄ **Estimation Methods**

General Findings

- CO₂ emission estimates easier to generalize
 based on fuel carbon content and other properties
 - Uncertainty range of 5-15% if estimate is based on heating values rather then carbon content knowledge
 - Additional errors may be introduced in fuel volumes data and in definitions of standard conditions
- CH₄ estimates more complex
 - Device specific and can vary with operating practices
 - Require knowledge of specific emission sources
- Techniques presented, particularly for combustion and indirect emissions, have broader application to many other industries

Comparative Study of Protocols

- API Compendium issued as Draft in April 2001 for a 1-year review, commentary and testing
- Initiated comparison study with widely used GHG estimation protocols as part of "road-testing"
- Qualitative differences identified include:
 - Scope and treatment of emission sources,
 - Referenced data used, and
 - Documentation of emission factors derivation
- API derived quantitative comparison of calculated emissions for typical Oil & Gas facilities
 - Uses hypothetical facilities previously described in the API Compendium

Protocols Used for Quantitative Comparisons

- Canadian Association of Petroleum Producers (CAPP),
 Global Climate Change Voluntary Challenge Guide (CAPP, 1999);
- Exploration and Production Forum (E&P Forum),
 Methods for Estimating Atmospheric Emissions from E&P Operations (E&P Forum, 1994);
- Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (IPCC, 1996; UNECE/EMEP, 1999; IPCC, 2001);
- Regional Association of Oil and Natural Gas Companies in Latin America and the Caribbean (ARPEL), Atmospheric Emissions Inventories Methodologies in the Petroleum Industry (ARPEL, 1998);
- U.S. EPA, Emission Inventory Improvement Program (EIIP, 1999);

Protocol Comparison – Onshore Oil Facility (CO₂ Rich)

[Preliminary Data]

•320 producing wells

- •Oil Production 6,100 bbl/day
- •Gas production 30 million scf/day;

Protocol Comparison – Onshore Oil Facility (CO₂ Rich)

[Preliminary Data]

Protocol

- •320 producing wells
- •Oil Production 6,100 bbl/day
- •Gas production 30 million scf/day;

Protocol Comparison – Large Complex Refinery

[Preliminary Data]

- Complex refinery
- Crude throughput 250,000 bbl/day

Protocol Comparison – Large Complex Refinery

[Preliminary Data]

- Complex refinery
- Crude throughput 250,000 bbl/day

Summary of General Differences

- API Compendium and ARPEL quantify noncombustion emissions by source.
- EIIP, IPCC and E&P Forum generally combine non-combustion sources into one or two emission factors, making it difficult to determine exactly what sources are included.
- Significant variation in CH₄ emissions from combustion sources due to different versions of AP-42 (some date back as far as 1986). Not significant for CO2.
- Combustion CO2 variation due to different fuel property basis (e.g., IPCC on LHV basis)

Summary of Differences for Industry Sectors

Production/Processing Operations:

- » API, ARPEL, and CAPP include tank flashing losses.
- ARPEL and CAPP cite Canadian data resulting in 1/3 of the API emission estimate which is based on both Canadian and US data.

Refining:

- API only includes combustion CH4 releases.
- EIIP and IPCC emissions result primarily from noncombustion sources.
- CAPP turbine emissions are 4 to 5 times higher than other protocols.
- » API accounts for CO2 vented from cat. cracker regeneration

Conclusions

- Combustion CO2 emissions dominate most inventories
 - For some facilities CH₄ is significant compared to total CO2-Equivalent emissions
- Documentation of calculation methods and transparency of other assumptions is key
- Some Protocols lack needed detail to
 - Understand the derivation of emission factors, and
 - Allow for appropriate application to other scenarios.
- Quantitative comparison, using typical facilities, enables a better understanding of differences noted in the qualitative evaluations

Further Information

Mail Orders

API Publications c/o Global Engineering Documents 15 Inverness Way East, Mail Stop C303B Englewood, CO 80112-5776

On-Line

www.global.ihs.com

By Telephone

1-800-854-7179

API Staff

Karin Ritter (<u>ritterk@api.org</u>) (202) 682-8472

Indirect Emissions

- API Compendium addresses indirect emissions from electricity, steam, and cogeneration
- Allocation of these emissions associated with imports and exports addressed in other protocols
- US utility information readily available for CO2, some potential issues for CH4
- International data combines heat and electricity